Exploring Situation Theory Using InfonLab

Eugene Doma School of Electrical and Information Engineering The University of Sydney Sydney, Australia eugened@ieee.org Bran Selic Malina Software Corp. Nepean, Ontario, Canada *selic@acm.org*

Hon A/Prof David Levy School of Electrical and Information Engineering The University of Sydney Sydney, Australia *david.levy@sydney.edu.au*

1

Agenda

- Objective and Approach
- Situation Theory: Why, What
- MBE Based on Situation Theory
- Empirical Assessment
- Conclusions

Agenda

- Objective and Approach
- Situation Theory: Why, What
- MBE Based on Situation Theory
- Empirical Assessment
- Conclusions

Objective

Transform requirements that are expressed in

natural language to formal design specifications

or programs that realize those requirements.

Agile / Iterative Development

Agile / Iterative Development

Approach

Identify and investigate an area of study which provides for the analysis and formalism for the content and meaning of natural language.

ISORC2015 Auckland, NZ

8

ISORC2015 Auckland, NZ

Agenda

Objective and Approach

Situation Theory: Why, What

- MBE Based on Situation Theory
- Empirical Assessment
- Conclusions

Linguistics (analysis of natural language) Logic (cast into a formal framework) Situation Theory

Foundations of Situation Theory

- Jon Barwise logician
- John Perry philosopher / linguist
- Centre for the Study of Language and Information, Stanford University

 "Unified mathematical theory of meaning and information content"

Goal of Situation Theory

To identify and capture information content in natural language within some scoped aspect of the world.

A Sketch of Situation Theory

- "The world is viewed as a collection of objects, their properties and relations"
- Infons $\langle r, a_1, a_2, ..., a_n; p \rangle$
 - r : relation
 - a_n: attributes
 - p : polarity

<<waitingOn, car, light ;1>>

Built-in Types

Туре	Description
TIM	Temporal location
LOC	Spatial location
IND	Individual
REL	Relation
SIT	Situation
INF	Infon
TYP	Type (user introduced types)
PAR	Parameter
POL	Polarity
STYP	Situation type
ROLE	Role (of attribute in a relation)

STML - domain specific lang.

- INF(LOC, 'FirstAve')
- LOC('FirstAve')
- > TYP('Road')

Relations & Roles

REL('waitingOn', ROLE('waiter', TYP('Waiter'), ROLE('controller', TYP('Controller')

SIT('FirstAveGreenLight', INF(LOC, 'FirstAve'), INF(On, green), INF(Off, amber), INF(Off, red)

STYP('greenLight', PAR('Road'), INF(LOC, PAR.Road), INF(On, green), INF(Off, amber), INF(Off, red)

Constraints & Inference

- S₂ := INF('redLight', 'ThirdSt')
- ---->
- S₁ := INF('greenLight', 'FirstAve')
- $C := CONS((R1, R2), T_1(R1), T_2(R2))$
- T₂ := STYP('redLight', PAR('R2')
- T₁ := STYP('greenLight', PAR('R1')
- Inference example

Agenda

- Objective and Approach
- Situation Theory: Why, What

MBE Based on Situation Theory

Empirical Assessment

Conclusions

Model Based Software Engineering

- Abstraction
- Understandability
- Accuracy

Domain Specific Language

- Specify
- Analyse
- Predict
- Validate

Formalism

Everything is a Model

Source: Bézivin, J. "On the unification power of models" Software System Modeling 4(2) 171-188

ISORC2015 Auckland, NZ

Meta-meta-model

Elements with which to create Meta-models

- Domain = meta-models
- Identify abstractions
- Define Domain Specific Language
 - Abstract syntax
 - Concrete syntaxes
 - Semantics

Meta-model

Elements with which to create Model(s)

- Locate domain
- Identify abstractions
- Define Domain Specific Language
 - Abstract syntax
 - Concrete syntaxes
 - Semantics

Defining Meta-model

- Types
 - define domain specific object classes

Relations

- define relationships between object classes
- Situation types & constraints
 - define semantics

Agenda

- Objective and Approach
- Situation Theory: Why, What
- MBE Based on Situation Theory

Empirical Assessment

Conclusions

Empirical Assessment

- Informal text to infons transformation
 - possible to perform manually
- Situation theory
 - used to define meta-model (DSML)
- Model (in DSML) mapped to infons

Agenda

- Objective and Approach
- Situation Theory: Why, What
- MBE Based on Situation Theory
- Empirical Assessment

Conclusions

Conclusion

- Situation theory found to be capable of
 - defining meta-models
 - representing models
 - defining some domain semantics
- Situation theory = linguistics + logic
 fit for analysis & modeling tasks
- Natural language processing and situation semantics analysis front-end essential

Conclusion ...

- Tooling needs many improvements
 - InfonLab needs improved error handling
 - InfonLab GUI needs more work
- With above improvements could attempt more complex examples
- Need to export (XMI) to existing tooling for artifact generation, etc.

Questions & Discussion

